Mosharaka for Research and Studies
Login/Sign Up
Main Menu
Papers Menu
Quick Links
Next Congress
International Congress on Engineering Technologies (EngiTek 2022)
1-3 November 2022, Irbid, Jordan

EnginApps 2022

MechaniTek 2022

ElectriTek 2022
EngiTek 2022 MainEngiTek 2022 CFPEngiTek 2022 SubmissionsEngiTek 2022 ProgramEngiTek 2022 Registration

All Forthcoming Congresses


All Forthcoming Conferences

Update on Wednesday, 19 January 2022: Paper 1.Cnf-3 reaches 932 views and 469 downloads.
Papers Links
  • Browse
  • Subjects
  • Years
  • ElecEng
  • GC-ElecEng 2020
  • 29.Cnf-1144
ElecEng Congresses with Published Papers
GC-ElecEng 2020, Valencia
GC-ElecEng 2021, Valencia
Papers Published at GC-ElecEng 2020
All 1 Paper
IDAuthors and TitlePages
29.Cnf-105 Dr. Alex Vukovic
Ms. Ayat Alrjoub
Furthering Innovation in Hyper Communication Era
29.Cnf-1144 Paper View Page
Title Anomaly detection for aircraft electrical generator using machine learning in a functional data framework
Authors Mrs. Fériel Boulfani, Institut de Mathématiques de Toulouse, Toulouse, France
Dr. Xavier Gendre, ISAE SUPAERO, Toulouse, France
Prof. Anne Ruiz-Gazen, Toulouse School of Economics, Toulouse, France
Mrs. Martina Salvignol, Airbus S.A.S., Toulouse, France
Abstract To reduce the number of aircraft on ground, the electrical design engineers are interested in predicting the oil temperature of the generator during a flight. Changes on the temperature value may indicate an incorrect functioning of the generator. An abnormal behavior can be identified by using machine learning algorithms that predict the generator oil temperature and are trained on flights free from any anomalies. The predictions resulting from the algorithm can then be compared to the observed values, here the sensor data collected from the aircraft during flight. If the observed value is far from the predicted value, a failure warning is raised and a maintenance action shall be performed.

In this paper, we build a digital twin of the electrical generator which predicts the oil generator temperature at a given time thanks to the history of features. We compare several machine learning procedures and the most promising procedure is chosen to predict the generator oil temperature. The digital twin is tested by using real flight data containing generator failures and it is verified that the algorithm is able to detect an anomaly prior to the failure events (early failure detection).

Track Intelligent: Intelligent Systems and Technologies
Conference 1st Mosharaka International Conference on Emerging Applications of Electrical Engineering (MIC-ElectricApps 2020)
Congress 2020 Global Congress on Electrical Engineering (GC-ElecEng 2020), 4-6 September 2020 (Remotely), Valencia, Spain
Pages --1
Topics Artificial Intelligence Tools
Intelligent Data Analysis
ISSN 2227-331X
BibTeX @inproceedings{1144ElecEng2020,
title={Anomaly detection for aircraft electrical generator using machine learning in a functional data framework},
author={Fériel Boulfani, and Xavier Gendre, and Anne Ruiz-Gazen, and Martina Salvignol},
booktitle={2020 Global Congress on Electrical Engineering (GC-ElecEng 2020)},
organization={Mosharaka for Research and Studies} }
Paper Views 415 Paper Views Rank 160/525
Paper Downloads 139 Paper Downloads Rank 191/525
GC-ElecEng 2020 Visits: 14978||MIC-ElectricApps 2020 Visits: 9281||Intelligent Track Visits: 1660